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Abstract. We consider matrices transforming between the standard Young–Yamanouchi basis
of the symmetric groupSn and bases adapted to the product subgroupsSn−b × Sb (the split
basis). We derive closed formulae for transformation coefficients forb = 3, which includes
the first cases when a choice of multiplicity separation is required. We discuss considerations
which can be applied to obtain a simple form for the multiplicity separation. We show that
the combinatorial and algebraic structure of the Littlewood–Richardson rule, also known as the
Biedenharn–Louck pattern calculus, does not assist with finding a simple multiplicity separation.

1. Introduction

Transformation coefficients between various bases of symmetric groups have many uses,
both directly and with various transformation coefficients of the unitary groups via the
Schur–Weyl duality (Elliottet al 1953, Kramer 1968, Vanagas 1971, Haase and Butler
1984a, b). A key outstanding problem is to resolve multiplicity separations (see Butler 1981
p 25) in a systematic manner for the symmetric and the unitary groups.

Biedenharn (1963), Baird and Biedenharn (1963–5) and Biedenharn and Louck (e.g.
1972) have argued that the pattern calculus (a variant of the Littlewood–Richardson
rule) should provide such an algorithm for labelling the multiplicity terms. In particular
Biedenharn, Louck and Baird are proponents of techniques dependent on the use of the
standard unitary basis (Un ⊃ Un−1 ⊃ · · · ⊃ U1). This leads them to propose the product
terms be labelled by basis kets of the ket-space, the (unitary) Gel’fand pattern. Butler (1975)
argues that the product terms may be able to be labelled by Young–Yamanouchi symbols of
symmetric groups. He mentions that these alternative labelling schemes may coincide due
to the combinatorial similarities between unitary and symmetric groups.

In essence the problem is whether there are combinatoric labels that give a canonical
separation of the multiplicity. We analyse the simplest multiplicity class. It arises in
Sn ⊃ Sn−3× S3. We prove that the ‘null space pattern’ of Biedenharnet al does not apply
to multiplicities.

In this paper we focus on the transformation between the standard Young–Yamanouchi
basis and a second basis for which we introduce the termsplit basisand denote it as the
Sn–Sa,b-basis. It is adapted to a direct product subgroupSa × Sb. Elliott et al (1953)
introduced this basis, as it was a big step in evaluating coefficients of fractional parentage
(cfp) for nuclear shell models. Although calculations of cfp have been undertaken for many
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years, there is still a need for more efficient methods. Indeed in cases of multiplicity, no
systematic method exists.

Studies of the split-to-standard transformation coefficients have yielded several general
numerical techniques for calculating the transformation coefficients (Horie 1964, Kaplan
1961, 1975, Chenet al 1983, Pan and Chen 1993) as well as closed formulae for particular
cases (Kaplan 1975, Suryanarayana and Rao 1982). The method of Pan and Chen (1993) is
particularly useful since it providesq-dependent algebraic solutions for the Hecke algebra,
Hn(q). Suryanarayana and Rao (1982) extend a formula obtained by Horie (1964) to give
a closed formula for irreducible representations (irreps) ofSb with at most two columns.
These results include multidimensional irreps ofSb but no multiplicities in the product of
the irreps ofSa andSb. Both Chenet al and Pan and Chen present calculations for at least
one case with such a multiplicity. However, they choose different multiplicity separations.

The first product multiplicity in the symmetric groups occurs inS6, where an irrep
product in S3 × S3 contains an irrep twice. This case is included in a general solution
that we derive forSn–S3,3-bases. We use the linear equation method of Pan and Chen
(1993) to derive the formulae for the coefficients associated with shapes remaining after
removing theS3 irrep from theSn irrep. We give the general solution before any choice of
multiplicity separation is made. We present a coherent framework of considerations which
can be applied to obtain simple forms for the separation and thus for the transformation
coefficients. We find a class of particularly simple separations.

None of the possible separations satisfy the Biedenharn–Louck conjecture that the
multiplicity can be tied down using a null space structure arising from the pattern calculus
(equivalently the Littlewood–Richardson rule).

In section 2 we define the standard basis and the split bases. We provide the background
for constructing the representation matrices in the standard basis. Various orderings of the
basis tableaux are given.

In section 3 we derive algebraic formulae, using an algorithm based on the linear
equation approach of Pan and Chen (1993). We first re-derive Kaplan’s (1975) formula for
removing two boxes from the right. We then consider the cases relating to the removal of
three boxes from the right; that is, the cases defined by the relative positions of the last
three boxes in the basis tableaux. For small hook lengths these cases are related.

In section 4 we present six considerations which are used to identify which sets of
transformation coefficients are to be considered simple. We demonstrate that one set of
separations is particularly simple.

We summarize and discuss our results in section 5.

2. The split bases for symmetric groups

In this section we outline the necessary background on symmetric group bases and on the
ordering of basis tableaux. We will work with the standard orthogonal basis for symmetric
group representations (see, for example, Rutherford (1948), Hamermesh (1962), Young
(1977)) and will call it theSn-basis.

The irreducible representations ofSn may be labelled by partitions [λ] of n. A partition
of n into i parts may be written as [λ1, λ2, . . . , λi ] such that

∑i
j=1 λj = n and theλj are

weakly decreasing. By forming a left-justified array withλj boxes on thej th row and with
the kth row below the(k − 1)th row, we obtain a Ferrers diagram. Young tableaux are
generated by filling the Ferrers diagram with the numbers 1, . . . , n such that each number
appears exactly once and the numbers strictly increase across rows and down columns. The
number of Young tableaux for a given partition ofn is equal to the dimension of an irrep
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of Sn, and each basis vector can be associated with a unique tableau.
Since any permutation can be generated as a product of adjacent transpositions, it suffices

to consider just the representation matrices for such transpositions. These matrices can be
calculated simply using the tableau parameter ofhook length(sometimes known as theaxial
distance) (see Rutherford (1948, pp 41–9); also Young (1977 [VI, pp 217, 218])). The hook
length between the box containingi, at (xi, yi), and the box containingj , at (xj , yj ), is
defined asτij = (xj − xi) − (yj − yi). We write theSn-basis representation matrix for
the adjacent transposition(k − 1, k) in the representationλ asMλ((k − 1, k)). For a more
general permutation,σ , we writeMλ(σ).

An alternative basis forSn, which we call thesplit basisand denote it as theSn–Sn−b,b-
basis, has basis functions adapted toSn and to the direct product subgroupSn−b × Sb. For
each factor group we choose theSn−b-basis andSb-basis, respectively. Whenb = 1, the
Sn–Sn−b,b-basis is theSn-basis. One can label the basis vectors of the split basis by a pair
of Young tableaux, the first witha = n − b boxes and the second withb boxes. These
tableaux determine the representation matrices of most adjacent transpositions in the split
bases as with the standard basis. If the adjacent transposition is inSa the hook lengths
in the first tableau are used. If the adjacent transposition is inSb the hook lengths in the
second tableau are used. The bridging transposition(n− b, n− b+ 1) cannot be calculated
in this manner, but can be found by using the split-to-standard transformation matrices.

To define different bases, and to order them, we make use of a combinatorial technique
known asjeu de taquin. Jeu de taquin, or simply jeu, is due to Scḧutzenberger (1963) and
is a procedure for removing a box from a Young tableau and then filling the hole created
by this removal so that the ultimate result is itself a Young tableau of standard shape.Jeu
can be described as follows:

Remove a box from the Young tableau. Examine the number in the box to the
right and the number in the box below the position of the removed box. Select the
number that is smallest and move the box containing it into the empty space. While
there are still boxes to the right in the same row as the hole, or lower in the same
column as the hole, repeat this procedure.

Authors have made different order choices on the set of Young tableaux. One popular
ordering islast letter order. This is the ordering used by Chenet al (1983), who call it
decreasing page order. When we say thata is lower in a tableau thanb, we meana is either
in a lower row, or in the same row and to the right ofb. Given two tableaux,T andU , T
precedesU in last letter order if the last letter of disagreement between the two is lower in
T than inU . The complementary ordering isfirst letter order. Given two tableaux,T and
U , T precedesU in first letter order if the first letter of disagreement betweenT andU is
lower inU than it is inT (Young 1977 [IV, p 258]). We will also make use of a third kind
of ordering, one dependent on the form of the split basis. Chenet al use this ordering for
the split basis without describing it in the manner we do now. Pan and Chen (1993) use a
similar ordering but are not completely consistent in their tables.

To define this third ordering we first establish a correspondence between a tableau of
shapeλ in the Sn-basis and a pair of tableaux of shape(α, β) in the split Sn–Sa,b-basis.
Given a tableau of shapeλ in the Sn-basis, remove the tableau,α, consisting of the boxes
containing the firsta labels. This tableau is the first in theSa × Sb pair. Then applyjeu to
the remainingb boxes to make a tableau of standard shape,β. This tableauβ is the second
in the Sa × Sb pair. This correspondence is many-to-one so that a singleαβ pair can have
many tableaux of shapeλ in theSn-basis that map to it. Order the tableau pairs(α, β) in the
Sn–Sa,b-basis in the following manner. First adopt an order on partitions such thatλ < ρ if
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Figure 1. The skew shapes remaining after the removal of(n− 2) boxes from the left.

λi = ρi for 16 i 6 k andλk > ρk. Now order the(α, β) pairs by theα, using the partition
order defined above if the shapes in two pairs are different, and by first letter order if the
shapes are the same. Then for pairs in which the first components are identical, order by
the second components, again first using partition order, and then first letter order. When a
pair occurs more than once, the situation known as product multiplicity, order those pairs
according to the first letter ordered list of standard tableaux from which they came. This
gives a unique ordering for any split basis.

3. Formulae for removing three boxes

Consider a general transformation from theSn-basis to theSn–Sn−b,b-basis. We can break
the transformation matrix into cases associated with the shape of the tableau obtained by
removingn− b blocks from the basis tableau of theSn-basis. This produces two shapes,α

andλ/α. The first is standard and associated with irreps of theSn−b subgroup; the second
shape is skew and associated with (non-standard) irreps of theSb subgroup. Standardizing
the second shape usingjeu gives the second irrep of the pair labelling the split basis,β.
Permutations cannot change the shape of the first irrep of the pair. Indeed as Chenet al
point out, Schur’s lemma furthermore implies that the transformation coefficient is the same
for each basis vector of this first irrep. Thus we can split the transformation coefficient
matrix into blocks. The blocks are of the dimension,|λ/α|, of the skew shape remaining
after removing the firstn− b boxes. The basis vectors of the split basis associated with the
basis vectors of theSn-basis are given by the process described in section 2.

Each of the dimension one irreps, [b] and [1b], will always give rise to a single 1× 1
block with a simple phase freedom.

Let us first consider the two-box example of Kaplan (1975). There are three cases (see
figure 1). The transformation coefficients of the first and last are phases±1. The interesting
case isB.

We begin by ordering the basis tableaux according to the prescription of section 2.
Label them alphabetically (upper-case) according to this order, with the split basis tableaux
labels having a prime attached. Consider then the two-way expansions of the entries on the
diagonal of the 2× 2 transformation matrix,

〈A′|(n− 1, n)|A〉 = 〈A′|A〉

= −1

d
〈A′|A〉 +

√
d2− 1

d
〈A′|B〉

whered is the absolute value of the axial distance from the box containingn−1 to the box
containingn, in the tableau labelledA. With the samed,

〈B ′|(n− 1, n)|B〉 = −〈B ′|B〉

= 1

d
〈B ′|A〉 +

√
d2− 1

d
〈B ′|B〉.



Split bases and multiplicity separations in symmetric groups 8367

Figure 2. The skew shapes remaining after the removal of(n− 3) boxes from the left.

Applying normality gives, withθ=±1, a choice of phase,(
θ

√
d−1
2d θ

√
d+1
2d

−θ
√
d+1
2d θ

√
d−1
2d

)
. (3.1)

Notice that our ordering differs from that of Kaplan (1975, equation (2.65), p 51).
Now let us proceed to removing three boxes. The cases are listed in figure 2, which

gives the skew shape and the relevant dimension for the associated transformation matrix.
We used the package MAPLE to implement a formalized algorithm based on the linear

equation method of Pan and Chen (1993). The formulae depend on the various hook lengths,
d, e, f = d + e, d+ = d + 1 as well as augmented hook lengths,h± = h± 1. Two phases,
θ andφ, occur in the multiplicity free cases. The general formulae follow.

CaseA. Completely symmetric,θ .

CaseB. (
θ 0
0 θ

)
. (3.2)

CaseC1. 
θ

√
d−

3d+
θ

√
d−d++
3dd+

θ

√
d++
3d

−φ
√
d++
6d+

−φ d++√
6dd+

φ

√
2d−
3d

−φ
√
d++
2d+

φ
√

d
2d+

0

 . (3.3)

CaseC2. 
θ

√
d−
3d+

θ

√
d−d++
3dd+

θ

√
d++
3d

−φ
√

2d++
3d+

φ
d−√
6d+d

φ

√
d−
6d

0 −φ
√
d+
2d φ

√
d−
2d

 . (3.4)
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CaseD. The solutions for the four central rows, corresponding to the multiplicity problem,
are given in equations (3.10).

θ

√
d−e−f−

6def θ

√
d−e+f−

6def θ

√
d+e−f−

6def θ

√
d−e+f+

6def θ

√
d+e−f+

6def θ

√
d+e+f+

6def
a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

φ

√
d+e+f+

6def −φ
√
d+e−f+

6def −φ
√
d−e+f+

6def φ

√
d+e−f−

6def φ

√
d−e+f−

6def −φ
√
d−e−f−

6def

 . (3.5)

CaseE1. 
θ

√
d−
2d θ

√
d+
2d 0

−θ
√
d−
6d θ

d−√
6d+d

θ

√
2d++
3d+

φ

√
d++
3d −φ

√
d−d++
3d+d

φ

√
d−
3d+

 . (3.6)

CaseE2. 
0 −θ

√
d

2d+
−θ
√
d++
2d+

−θ
√

2d−
3d −θ d++√

6d+d
θ

√
d++
6d+

φ

√
d++
3d −φ

√
d−d++

3d+
φ

√
d−

3d+

 . (3.7)

CaseF . (
θ
2

√
3θ
2√

3θ
2 − θ

2

)
. (3.8)

CaseG. Completely anti-symmetric,θ .

We now return to consideration of the four central rows of caseD, the multiplicity case.
The system of equations includes three orthonormality equations, thus three independent
phase choices exist,θ, φ, ψ . There is one free factor governing multiplicity separation. We
express all coefficients in terms of two judiciously chosen variables,x andy and their ratio,
r = y/x. We let

x = 1/
√

6def (2de + d − e + 1)(1+ 3d+d−e+e−f+f−r2). (3.9)

The solutions, where theaij are shown in equation (3.5), are

a11 =
√
d−/d+a13 a12 =

√
f−/f+a14 a15 =

√
e−/e+a16

a13 = −d+
√
f−[θe++x + 3ψd−e+e−f+y]

a14 =
√
d+d−e+e−f+[2θx − 3ψf+f−y]

a16 =
√
e+e−f+[−θd−−x + 3ψd+d−e+f−y]
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a21 =
√
d−/d+a23 a22 =

√
f−/f+a24 a25 =

√
e−/e+a26

a23 = −
√

3d+d−e+e−f+[x + φd+e++f−y]

a24 = f+
√

3f−[−x + 2φd+d−e+e−y]

a26 = e+
√

3d+d−f−[x − φd−−e−f+y] (3.10)

a31 = −
√
d+/d−a33 a32 = −

√
f+/f−a34 a35 = −

√
e+/e−a36

a33 = d−
√

3f−[−θex + ψd+e+e−f+y]

a34 = ψ(2de + d − e + 1)f−
√

3d+d−e+e−f+y

a36 =
√

3e+e−f+[θdx + ψd+d−e−f−y]

a41 = −
√
d+/d−a43 a42 = −

√
f+/f−a44 a45 = −

√
e+/e−a46

a43 =
√
d+d−e+e−f+[x − 3φd−ef−y]

a44 = (2de + d − e + 1)
√
f−x

a46 = e−
√
d+d−f−[x + 3φde+f+y].

4. Choices of phase and multiplicity separation

We want to find the simplest and most natural form for these symmetric group transformation
coefficients. There are a number of important considerations in this regard.

(I) The transformation coefficients should be chosen to be real if possible. (The
expressions in section 3 assume this reality choice, as does the form of the algorithm
used.)

(II) The general formulae obtained depend only upon the hook lengths, and are
independent ofn. Thus phases and the multiplicity separation should be chosen independent
of n.

(III) When either of the hook lengthsd or e is unity, the multiplicity is lifted. The
expression for the multiplicity-two coefficients must reduce to the multiplicity free solutions.

(IV) The multiplicity separation is to be chosen so that a maximal number of zero
coefficients is obtained.

(V) It is desirable to have the coefficients expressible as a single surd of the form
a
√
b/c, with a, b, c integers.
(VI) We ask that the prime numbers which occur in the surds are as small as possible

(relative tod ande).
Butler (1981 p 241) has raised some these considerations before. Butler (1981) proved

that some transformation coefficients, in particular the set of T–D2–3jm, satisfy neither
(I) nor (V). Butler and Ford (1979) also proved that (IV) and (VI) were equivalent for
octahedral 6j and derived a table of 6j which had both smaller prime numbers and more
zeros than Griffith (1962).

In section 3 we expressed the coefficients in a form so that the above considerations
may be easily taken into account.

Particular choices ofx (andy) will cause various pairs of coefficients to vanish. There
are 12 such zero conditions, which are distinct, so that consideration (IV) gives a maximum
of two zeros. All zero conditions satisfy (V). Indeed only ifr = y/x is a rational function
of d and e do all the coefficients satisfy (V) Pan and Chen (1993). Choose a separation
that satisfies (V), but not (IV).

Zero conditions on coefficients which differ only in the labelling of the multiplicity,
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(a11, a13) and (a21, a23) for example, give sets of coefficients differing only in the multiplicity
label. This symmetry allows us to retain just the six zero conditions associated with first
and third row coefficients.

Of the six distinct zero conditions we now ask which satisfy (VI). We see that the largest
potentially prime factors in the transformation coefficients appear inx,

√
2de + d − e + 1

and
√

1+ 3d+d−e+e−f+f−r2. The former is of order two in hook lengths, but the latter,
which can be written√

1+ 3(d2− 1)(e2− 1)(f 2− 1)r2 (4.1)

is potentially troublesome. However, for all of the zero conditions we can factorize this
expression into terms of no greater than order two ind and e. For example, setting
a35 = a36 = 0 givesr = −θd/(ψd+d−e−f−), so that (4.1) reduces to√

(2d2+ 2de + 2d + e − 1)(2de + d − e + 1)/(d+d−e−f−). (4.2)

To distinguish between the six zero conditions let us use (III) to look at the restriction
of hook lengths so that the multiplicity is lifted. This occurs when eitherd or e is unity.
However, because of thed−e− term in (3.9), the dependence ofx on r is lost. Putting this
degeneracy aside and settingd = e = 1 in (3.10) we obtain the submatrix

0 0 −θ 0 0 0
0 − 1

2 0 −
√

3
2 0 0

0 0 0 0 −θ 0
0 −

√
3

2 0 1
2 0 0

 . (4.3)

From figure 2 we see that those coefficients reduce to those for casesB andF , given in
(3.2) and (3.8) respectively. The second and fourth columns relate toF and the third and
fifth to B. The first and last columns correspond to the irreps [13] and [3], not [2 1], and
so must be zero. Four of the six zero conditions have zeros in positions that either conflict
directly with (4.3), or with the corresponding matrices when only one ofd or e is unity.

The six considerations for simplicity do not strongly distinguish between the two
remaining solutions: (a12, a14) and (a32, a34). The magnitudes of coefficients for the
former condition are dependent upon phase choices. Choosingψφθ = 1 gives the
simplest magnitudes, and the resulting coefficients are related to coefficients of the
(a32, a34) solution. Thus we conclude that the solution associated with this (a32, a34)
zero condition is the simplest and thus best choice of multiplicity separation. Defining
α = √6def (2de + e − d + 1)

a13 = −θd+e++
√
f−/α a23 = −

√
3d+d−e+e−f+/α

a14 = 2θ
√
d+d−e+e−f+/α a24 = −f+

√
3f−/α

a16 = −θd−−
√
e+e−f+/α a26 = e+

√
3d+d−f−/α

a33 = −θed−
√

3f−/α a43 =
√
d+d−e+e−f+/α

a34 = 0 a44 = (2de + d − e + 1)
√
f−/α

a36 = θd
√

3e+e−f+/α a46 = e−
√
d+d−f−/α.

(4.4)

This is the choice of multiplicity separation made by Chenet al (1983) for thed = e = 2
case. The choice of Pan and Chen (1993), for the Hecke algebras is different. They introduce
a symmetry requirement on theirS6 separation which is inconsistent with our consideration
(IV). Both published solutions forS6 satisfy (VI), having the largest prime in a surd as
5. (There are a few errors in the tables of Chenet al: table I.1 of phase factors3µ

m, the
sixth factor for [3 1 1] has the wrong sign; table II.16{1122} with 1 has the wrong sign;
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table II.17{2111} with 8 should be 5 rather than 0; table II.22{2132} with 16 should be 2
rather than 0.)

Let us now use the considerations (II), (III) and (IV) to examine phase choices for all
solutions.

For d = 1 casesC1, C2 and E1, E2 collapse to casesA, B, F andG. This gives the
following relations between the phases.

θC1 = θA φC1 = −θF θC2 = θA φC2 = −θB
θE1 = θB φE1 = θG θE2 = −θF φE2 = θG.

(4.5)

Settingd = e = 1 in the first and last rows of caseD, as given in section 3, we find that

θD = θA φD = θG. (4.6)

We thus need to choose four phases. We choose,

θA = θB = −θF = θG = 1 (4.7)

where we use the negativeθF so thatθG = φC2 in (4.5).

5. Summary

The investigation in this paper was motivated by four factors. First, the split basis itself is
not completely understood, especially in the sense that the bridging transposition in the split
basis cannot be calculated as directly as other transpositions. Second, a general formula for
the split-to-standard transformation coefficients is not available and we wished to extend
the two box formulae of Kaplan (1975) to the case of three boxes. Third, we observed that
Pan and Chen (1993) and Chenet al (1983) make different multiplicity choices for the first
situation where such a choice is necessary. The fourth, and main motivation, was the desire
to find out if the Littlewood–Richardson rule was enough to give a canonical multiplicity
separation.

We have presented the explicit formula for the transformation coefficients between the
standard (Young–Yamanouchi) basis and the split basis corresponding to the removal of
three boxes. The results are presented in terms of the nine cases distinguished by the skew
shape remaining after removingn − 3 boxes from the left. We have obtained the general
multiplicity two solutions for theSn–Sn−3,3-basis. We have discussed six considerations so
as to compare transformation coefficients for simplicity. The simpler separations were found
to correspond to one of 12 zero conditions. These occurred in pairs linked by relabelling
the multiplicity. Two of these six pairs matched the solutions of degenerate cases. We fixed
upon a solution where phases and magnitudes had their simplest numerical form.

In our complete solution to this multiplicity problem we proved that the Littlewood–
Richardson rule (the pattern calculus of Biedenharn and Louck (1981)) does not provide a
specific separation, and that the ‘null space pattern’ envisaged by Biedenharnet al does not
exist. When no multiplicities exist the Littlewood–Richardson rule gives the pattern relations
between the split and standard bases. The pattern relations implicit in the combinatorial
structure of the Littlewood–Richardson rule do not determine a canonical set of basis
functions for the bases labelled by multiplicity labels. Rather, a choice must be made
using criteria beyond the Littlewood–Richardson rule.

We reviewed and extended considerations for making the choice of the multiplicity
separation. We showed that in thisSn → Sn–Sn,n−3-basis transformation, these six
considerations could be simultaneously satisfied. The next steps in a search for a
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combinatorial recipe for a multiplicity separation could be to look at other multiplicity-
two cases and the first multiplicity-three case. The multiplicity-three case first occurs in the
decomposition of [4 3 2 1] of S10 into [321]× [31] of S6× S4.
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